Characterization of graphs having extremal Randić indices
نویسندگان
چکیده
The higher Randić index Rt (G) of a simple graph G is defined as Rt (G) = ∑ i1i2···it+1 1 √ δi1δi2 · · · δit+1 , where δi denotes the degree of the vertex i and i1i2 · · · it+1 runs over all paths of length t in G. In [J.A. Rodríguez, A spectral approach to the Randić index, Linear Algebra Appl. 400 (2005) 339–344], the lower and upper bound on R1(G) was determined in terms of a kind of Laplacian spectra, and the lower and upper bound on R2(G) were done in terms of kinds of adjacency and Laplacian spectra. In this paper we characterize the graphs which achieve the upper or lower bounds of R1(G) and R2(G), respectively. © 2006 Elsevier Inc. All rights reserved. AMS classification: 05C50; 15A18; 92E10
منابع مشابه
A Survey on the Randić Index
The general Randić index Rα(G) of a (chemical) graph G, is defined as the sum of the weights (d(u)d(v))α of all edges uv of G, where d(u) denotes the degree of a vertex u in G and α an arbitrary real number, which is called the Randić index or connectivity index (or branching index) for α = −1/2 proposed by Milan Randić in 1975. The paper outlines the results known for the (general) Randić inde...
متن کاملThe Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...
متن کاملExtremal Problems for Topological Indices in Combinatorial Chemistry
Topological indices of molecular graphs are related to several physicochemical characteristics; recently, the inverse problem for some of these indices has been studied, and it has some applications in the design of combinatorial libraries for drug discovery. It is thus very natural to study also extremal problems for these indices, i.e., finding graphs having minimal or maximal index. In this ...
متن کاملLeap Zagreb indices of trees and unicyclic graphs
By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. ...
متن کاملNote on multiple Zagreb indices
The Zagreb indices are the oldest graph invariants used in mathematical chemistry to predict the chemical phenomena. In this paper we define the multiple versions of Zagreb indices based on degrees of vertices in a given graph and then we compute the first and second extremal graphs for them.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006